3.32 \(\int \frac{A+C \cos ^2(c+d x)}{(b \sec (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=115 \[ \frac{2 (7 A+5 C) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{b \sec (c+d x)}}{21 b^2 d}+\frac{2 (7 A+5 C) \sin (c+d x)}{21 b d \sqrt{b \sec (c+d x)}}+\frac{2 b^2 C \tan (c+d x)}{7 d (b \sec (c+d x))^{7/2}} \]

[Out]

(2*(7*A + 5*C)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[b*Sec[c + d*x]])/(21*b^2*d) + (2*(7*A + 5*C)*
Sin[c + d*x])/(21*b*d*Sqrt[b*Sec[c + d*x]]) + (2*b^2*C*Tan[c + d*x])/(7*d*(b*Sec[c + d*x])^(7/2))

________________________________________________________________________________________

Rubi [A]  time = 0.133047, antiderivative size = 115, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {3238, 4045, 3769, 3771, 2641} \[ \frac{2 (7 A+5 C) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{b \sec (c+d x)}}{21 b^2 d}+\frac{2 (7 A+5 C) \sin (c+d x)}{21 b d \sqrt{b \sec (c+d x)}}+\frac{2 b^2 C \tan (c+d x)}{7 d (b \sec (c+d x))^{7/2}} \]

Antiderivative was successfully verified.

[In]

Int[(A + C*Cos[c + d*x]^2)/(b*Sec[c + d*x])^(3/2),x]

[Out]

(2*(7*A + 5*C)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[b*Sec[c + d*x]])/(21*b^2*d) + (2*(7*A + 5*C)*
Sin[c + d*x])/(21*b*d*Sqrt[b*Sec[c + d*x]]) + (2*b^2*C*Tan[c + d*x])/(7*d*(b*Sec[c + d*x])^(7/2))

Rule 3238

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_.))^(p_.), x_Symbol] :> Dist
[d^(n*p), Int[(d*Csc[e + f*x])^(m - n*p)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x
] &&  !IntegerQ[m] && IntegersQ[n, p]

Rule 4045

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[(A*Cot[e
 + f*x]*(b*Csc[e + f*x])^m)/(f*m), x] + Dist[(C*m + A*(m + 1))/(b^2*m), Int[(b*Csc[e + f*x])^(m + 2), x], x] /
; FreeQ[{b, e, f, A, C}, x] && NeQ[C*m + A*(m + 1), 0] && LeQ[m, -1]

Rule 3769

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Csc[c + d*x])^(n + 1))/(b*d*n), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{A+C \cos ^2(c+d x)}{(b \sec (c+d x))^{3/2}} \, dx &=b^2 \int \frac{C+A \sec ^2(c+d x)}{(b \sec (c+d x))^{7/2}} \, dx\\ &=\frac{2 b^2 C \tan (c+d x)}{7 d (b \sec (c+d x))^{7/2}}+\frac{1}{7} (7 A+5 C) \int \frac{1}{(b \sec (c+d x))^{3/2}} \, dx\\ &=\frac{2 (7 A+5 C) \sin (c+d x)}{21 b d \sqrt{b \sec (c+d x)}}+\frac{2 b^2 C \tan (c+d x)}{7 d (b \sec (c+d x))^{7/2}}+\frac{(7 A+5 C) \int \sqrt{b \sec (c+d x)} \, dx}{21 b^2}\\ &=\frac{2 (7 A+5 C) \sin (c+d x)}{21 b d \sqrt{b \sec (c+d x)}}+\frac{2 b^2 C \tan (c+d x)}{7 d (b \sec (c+d x))^{7/2}}+\frac{\left ((7 A+5 C) \sqrt{\cos (c+d x)} \sqrt{b \sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{21 b^2}\\ &=\frac{2 (7 A+5 C) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{b \sec (c+d x)}}{21 b^2 d}+\frac{2 (7 A+5 C) \sin (c+d x)}{21 b d \sqrt{b \sec (c+d x)}}+\frac{2 b^2 C \tan (c+d x)}{7 d (b \sec (c+d x))^{7/2}}\\ \end{align*}

Mathematica [A]  time = 0.524948, size = 79, normalized size = 0.69 \[ \frac{2 \sin (c+d x) (14 A+3 C \cos (2 (c+d x))+13 C)+\frac{4 (7 A+5 C) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{\sqrt{\cos (c+d x)}}}{42 b d \sqrt{b \sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + C*Cos[c + d*x]^2)/(b*Sec[c + d*x])^(3/2),x]

[Out]

((4*(7*A + 5*C)*EllipticF[(c + d*x)/2, 2])/Sqrt[Cos[c + d*x]] + 2*(14*A + 13*C + 3*C*Cos[2*(c + d*x)])*Sin[c +
 d*x])/(42*b*d*Sqrt[b*Sec[c + d*x]])

________________________________________________________________________________________

Maple [C]  time = 0.533, size = 241, normalized size = 2.1 \begin{align*}{\frac{2\, \left ( 1+\cos \left ( dx+c \right ) \right ) ^{2} \left ( -1+\cos \left ( dx+c \right ) \right ) }{21\,d \left ( \cos \left ( dx+c \right ) \right ) ^{2} \left ( \sin \left ( dx+c \right ) \right ) ^{3}} \left ( -7\,iA\sqrt{ \left ( 1+\cos \left ( dx+c \right ) \right ) ^{-1}}\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}{\it EllipticF} \left ({\frac{i \left ( -1+\cos \left ( dx+c \right ) \right ) }{\sin \left ( dx+c \right ) }},i \right ) \sin \left ( dx+c \right ) -5\,iC\sqrt{ \left ( 1+\cos \left ( dx+c \right ) \right ) ^{-1}}\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}\sin \left ( dx+c \right ){\it EllipticF} \left ({\frac{i \left ( -1+\cos \left ( dx+c \right ) \right ) }{\sin \left ( dx+c \right ) }},i \right ) +3\,C \left ( \cos \left ( dx+c \right ) \right ) ^{4}-3\,C \left ( \cos \left ( dx+c \right ) \right ) ^{3}+7\,A \left ( \cos \left ( dx+c \right ) \right ) ^{2}+5\,C \left ( \cos \left ( dx+c \right ) \right ) ^{2}-7\,A\cos \left ( dx+c \right ) -5\,C\cos \left ( dx+c \right ) \right ) \left ({\frac{b}{\cos \left ( dx+c \right ) }} \right ) ^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+C*cos(d*x+c)^2)/(b*sec(d*x+c))^(3/2),x)

[Out]

2/21/d*(1+cos(d*x+c))^2*(-1+cos(d*x+c))*(-7*I*A*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*Ell
ipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)*sin(d*x+c)-5*I*C*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(
1/2)*sin(d*x+c)*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)+3*C*cos(d*x+c)^4-3*C*cos(d*x+c)^3+7*A*cos(d*x+c)^2+5
*C*cos(d*x+c)^2-7*A*cos(d*x+c)-5*C*cos(d*x+c))/cos(d*x+c)^2/(b/cos(d*x+c))^(3/2)/sin(d*x+c)^3

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{C \cos \left (d x + c\right )^{2} + A}{\left (b \sec \left (d x + c\right )\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)/(b*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + A)/(b*sec(d*x + c))^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sqrt{b \sec \left (d x + c\right )}}{b^{2} \sec \left (d x + c\right )^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)/(b*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

integral((C*cos(d*x + c)^2 + A)*sqrt(b*sec(d*x + c))/(b^2*sec(d*x + c)^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{A + C \cos ^{2}{\left (c + d x \right )}}{\left (b \sec{\left (c + d x \right )}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)**2)/(b*sec(d*x+c))**(3/2),x)

[Out]

Integral((A + C*cos(c + d*x)**2)/(b*sec(c + d*x))**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{C \cos \left (d x + c\right )^{2} + A}{\left (b \sec \left (d x + c\right )\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)/(b*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)/(b*sec(d*x + c))^(3/2), x)